Em regiões agrícolas, é comum a presença de silos para armazenamento e secagem da produção de grãos, no formato de um cilindro reto, sobreposto por um cone, e dimensões indicadas na figura. O silo fica cheio e o transporte dos grãos é feito em caminhões de carga cuja capacidade é de 20 m3. Uma região possui um silo cheio e apenas um caminhão para transportar os grãos para a usina de beneficiamento.

Utilize 3 como aproximação para π.

O número mínimo de viagens que o caminhão precisará fazer para transportar todo o volume de grãos armazenados no silo é

  • a

    6.

  • b

    16.

  • c

    17.

  • d

    18.

  • e

    21.

Sendo R a medida do raio do cilindro reto e do cone, H a altura do cilindro reto e h a altura do cone, tem-se que o volume (V) do silo é dado por:

«math style=¨font-family:Tahoma¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«mi mathvariant=¨normal¨»V«/mi»«mo»§#xA0;«/mo»«mo»=«/mo»«mo»§#xA0;«/mo»«mi mathvariant=¨normal¨»§#x3C0;«/mi»«mo»§#xA0;«/mo»«mo»§#xB7;«/mo»«mo»§#xA0;«/mo»«msup»«mi mathvariant=¨normal¨»R«/mi»«mn»2«/mn»«/msup»«mo»§#xA0;«/mo»«mo»§#xB7;«/mo»«mo»§#xA0;«/mo»«mi mathvariant=¨normal¨»H«/mi»«mo»§#xA0;«/mo»«mo»+«/mo»«mo»§#xA0;«/mo»«mfrac»«mn»1«/mn»«mn»3«/mn»«/mfrac»«mo»§#xA0;«/mo»«mo»§#xB7;«/mo»«mo»§#xA0;«/mo»«mi mathvariant=¨normal¨»§#x3C0;«/mi»«mo»§#xA0;«/mo»«mo»§#xB7;«/mo»«mo»§#xA0;«/mo»«msup»«mi mathvariant=¨normal¨»R«/mi»«mn»2«/mn»«/msup»«mo»§#xA0;«/mo»«mo»§#xB7;«/mo»«mo»§#xA0;«/mo»«mi mathvariant=¨normal¨»h«/mi»«mspace linebreak=¨newline¨/»«mo»§#x2234;«/mo»«mo»§#xA0;«/mo»«mi mathvariant=¨normal¨»V«/mi»«mo»§#xA0;«/mo»«mo»=«/mo»«mo»§#xA0;«/mo»«mn»3«/mn»«mo»§#xA0;«/mo»«mo»§#xB7;«/mo»«mo»§#xA0;«/mo»«mo»(«/mo»«mn»3«/mn»«msup»«mo»)«/mo»«mn»2«/mn»«/msup»«mo»§#xA0;«/mo»«mo»§#xB7;«/mo»«mo»§#xA0;«/mo»«mn»12«/mn»«mo»§#xA0;«/mo»«mo»+«/mo»«mo»§#xA0;«/mo»«mfrac»«mn»1«/mn»«mn»3«/mn»«/mfrac»«mo»§#xA0;«/mo»«mo»§#xB7;«/mo»«mo»§#xA0;«/mo»«mn»3«/mn»«mo»§#xA0;«/mo»«mo»§#xB7;«/mo»«mo»§#xA0;«/mo»«mo»(«/mo»«mn»3«/mn»«msup»«mo»)«/mo»«mn»2«/mn»«/msup»«mo»§#xA0;«/mo»«mo»§#xB7;«/mo»«mo»§#xA0;«/mo»«mn»3«/mn»«mspace linebreak=¨newline¨/»«mo»§#x2234;«/mo»«mo»§#xA0;«/mo»«mi mathvariant=¨normal¨»V«/mi»«mo»§#xA0;«/mo»«mo»=«/mo»«mo»§#xA0;«/mo»«mn»351«/mn»«mo»§#xA0;«/mo»«msup»«mi mathvariant=¨normal¨»m«/mi»«mn»3«/mn»«/msup»«mspace linebreak=¨newline¨/»«/mrow»«/mstyle»«/math»

Sendo n o número de viagens do caminhão, tem-se:

«math style=¨font-family:Tahoma¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi mathvariant=¨normal¨»n«/mi»«mo»§#xA0;«/mo»«mo»§#xB7;«/mo»«mo»§#xA0;«/mo»«mn»20«/mn»«mo»§#xA0;«/mo»«mo»§#x2265;«/mo»«mo»§#xA0;«/mo»«mn»351«/mn»«mspace linebreak=¨newline¨/»«mo»§#x2234;«/mo»«mo»§#xA0;«/mo»«mi mathvariant=¨normal¨»n«/mi»«mo»§#xA0;«/mo»«mo»§#x2265;«/mo»«mo»§#xA0;«/mo»«mfrac»«mn»351«/mn»«mn»20«/mn»«/mfrac»«mspace linebreak=¨newline¨/»«mo»§#x2234;«/mo»«mo»§#xA0;«/mo»«mi mathvariant=¨normal¨»n«/mi»«mo»§#xA0;«/mo»«mo»§#x2265;«/mo»«mo»§#xA0;«/mo»«mn»17«/mn»«mo»,«/mo»«mn»55«/mn»«/mstyle»«/math»

Logo, o número mínimo de viagens é 18.