Seja M(a, b, c) a mediana dos três números reais a, b, c. Por exemplo, M(1, 2, 5) = 2 e M(100, 8, 50) = 50.
Dois números reais distintos x e y são tais que:
Determine x e y.
Como x e y são números distintos e M(x,y,20) = 8, temos duas possibilidades:
- x < y, de modo que y = 8, ou
- x > y, de modo que x = 8
Na primeira possibilidade, teríamos 2y = 16, de modo que não seria possível que M(x,2y,20) = 12. Logo, temos x > y e x = 8.
Assim, se M(x,2y,20) = M(8,2y,20) = 12, devemos ter 2y = 12, ou seja, y = 6.
Logo, x = 8 e y = 6.